Acta Cryst. (1994). C50, 1343-1345

1-Tosyl-1H-pyrrolo[2,3-c]pyridine-5carboxylic Acid Ethyl Ester

Angèle Chiaroni, Claude Riche, Mouloud Dekhane and Robert H. Dodd
Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

(Received 25 November 1993; accepted 4 February 1994)

Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, was synthesized starting from 1 H -pyrrole-2-carboxaldehyde under acidic conditions. The X-ray structure determination has proved that the compound was the expected pyrrolo[2,3c]pyridine derivative and not the pyrrolo[$3,2-c$]pyridine isomer. The molecules are packed such that the azaindole rings are stacked in one set of parallel planes and the phenyl rings are stacked in another, with interplanar distances of 3.50 (1) and 3.83 (1) \AA, respectively, giving the molecule a ' V ' shape.

Comment

In connection with studies aimed at the development of new central nervous system agents, we recently prepared the title compound, (1), starting from $1 H$-pyrrole-2carboxaldehyde (Dekhane, Potier \& Dodd, 1993). As the acidic conditions used to synthesize (1) have been shown to cause substituents at the C2 position of the pyrrole ring to migrate to the C3 position (Carson \& Davis, 1981; Desales, Greenhouse \& Muchowski, 1982), there was some doubt as to whether the compound isolated was actually an isomer of (1), that is, 1-tosyl$1 H$-pyrrolo[3,2-c]pyridine-6-carboxylic acid ethyl ester, (2). Such an isomer could not, however, be differentiated from (1) using conventional spectroscopic methods. Therefore, it was necessary to confirm the structure of (1) by an X-ray crystallographic study.

The molecular structure of (1) is shown in Fig. 1. It consists of two planar moieties bridged at the S atom, with a dihedral angle of 95° between the respective
mean planes of the azaindole ring ($\mathrm{N} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 3 \mathrm{a}, \mathrm{C} 4$, C5, N6, C7, C7a) and the phenyl ring. The azaindole ring is perfectly planar [maximum atomic deviation from the mean plane: $0.016(3) \AA$] and short distances at $\mathrm{C} 2-\mathrm{C} 3[1.335$ (5) \AA] and $\mathrm{N} 6-\mathrm{C} 7[1.325$ (4) \AA] have been found. Interestingly, the molecules are packed (Fig. 2) such that the azaindole rings on one hand and the phenyl rings on the other are stacked in parallel planes with distances of 3.50 (1) and 3.83 (1) \AA, respectively, between the mean planes, giving the molecules a ' V ' shape. This specific stacking is also depicted in Fig. 1 where the molecule is shown projected down the crystallographic a axis. Consequently, all the molecules obtained by translation along this axis are superimposable.

Fig. 1. Perspective view of the molecule projected along the a axis.

Fig. 2. Packing of the molecules. For clarity the molecules obtained by the centre of symmetry have been omitted.

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=344.39$
Triclinic
$P \overline{1}$
$a=5.088$ (3) \AA
$b=11.566$ (8) \AA
$c=14.909(12) \AA$
$\alpha=110.32(3)^{\circ}$
$\beta=96.62$ (3) ${ }^{\circ}$
$\gamma=91.42$ (3)
(3) ${ }^{\circ}$
$V=815.3(9) \AA^{3}$
$Z=2$
$D_{x}=1.40 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
2864 measured reflections
2749 independent reflections
1988 observed reflections $[I>3.0 \sigma(I)]$

Refinement

Refinement on F
$R=0.043$
$w R=0.065$
$S=1.35$
1983 reflections
217 parameters
H -atom parameters not refined
Calculated weights

$$
w=1 /\left[\sigma^{2}(F)+0.0072 F^{2}\right]
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
N1	$0.4317(5)$	$0.6094(2)$	$0.2586(2)$	$0.047(2)$
C2	$0.4612(7)$	$0.6849(3)$	$0.2036(2)$	$0.060(4)$
C3	$0.6202(8)$	$0.6347(3)$	$0.1371(2)$	$0.066(4)$
C3a	$0.7071(6)$	$0.5232(2)$	$0.1492(2)$	$0.048(3)$
C4	$0.8762(6)$	$0.4336(3)$	$0.1051(2)$	$0.050(3)$
C5	$0.9105(6)$	$0.3377(2)$	$0.1390(2)$	$0.041(3)$
N6	$0.7893(5)$	$0.3230(2)$	$0.2104(2)$	$0.044(2)$
C7	$0.6286(6)$	$0.4073(2)$	$0.2531(2)$	$0.045(3)$
C7a	$0.5876(5)$	$0.5093(2)$	$0.2257(2)$	$0.041(3)$
C8	$1.0978(6)$	$0.2433(2)$	$0.0942(2)$	$0.045(3)$
O9	$1.2249(5)$	$0.2499(2)$	$0.0325(2)$	$0.066(3)$
O10	$1.1135(4)$	$0.1528(2)$	$0.1300(1)$	$0.056(2)$
C11	$1.3021(7)$	$0.0620(3)$	$0.0914(3)$	$0.060(3)$
C12	$1.2735(7)$	$-0.0382(3)$	$0.1325(3)$	$0.068(4)$
S13	$0.2934(1)$	$0.6534(1)$	$0.3608(1)$	$0.045(1)$
O14	$0.2025(4)$	$0.5419(2)$	$0.3714(2)$	$0.056(2)$
O15	$0.1176(4)$	$0.7433(2)$	$0.3514(2)$	$0.060(2)$
C16	$0.5541(5)$	$0.7261(2)$	$0.4535(2)$	$0.042(3)$
C17	$0.6848(6)$	$0.6600(3)$	$0.5037(2)$	$0.055(3)$
C18	$0.8886(7)$	$0.7179(3)$	$0.5763(2)$	$0.061(4)$
C19	$0.9616(6)$	$0.8424(3)$	$0.6004(2)$	$0.051(3)$

> Cu $K \alpha$ radiation
> $\lambda=1.5418 \AA$
> Cell parameters from 25 \quad reflections
> $\theta=9.6-19.4^{\circ}$
> $\mu=1.93 \mathrm{~mm}^{-1}$
> $T=293 \mathrm{~K}$
> Prism
> $0.40 \times 0.15 \times 0.03 \mathrm{~mm}$
> Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.028 \\
& \theta_{\max }=64.94^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-13 \rightarrow 12 \\
& l=0 \rightarrow 17
\end{aligned}
$$

3 standard reflections frequency: 166 min intensity variation: none

$$
\begin{aligned}
& \Delta / \sigma)_{\max }=0.04 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

C20	$0.8242(6)$	$0.9074(3)$	$0.5496(2)$	$0.053(3)$
C21	$0.6232(6)$	$0.8507(3)$	$0.4750(2)$	$0.051(3)$
C22	$1.1853(7)$	$0.9051(4)$	$0.6782(2)$	$0.069(4)$

Table 2. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

N1-C2	1.406 (4)	C8-O10	1.330 (4)
N1-C7a	1.397 (4)	O10-C11	1.453 (4)
N1-S13	1.674 (2)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.498 (5)
$\mathrm{C} 2-\mathrm{C} 3$	1.335 (5)	S13-014	1.424 (2)
C3-C3a	1.436 (5)	S13-015	1.421 (2)
C3a-C4	1.396 (4)	S13-C16	1.758 (3)
C3a-C7a	1.406 (4)	C16-C17	1.376 (4)
C4-C5	1.376 (4)	C16--C21	1.389 (4)
C5-N6	1.347 (3)	C17-C18	1.378 (5)
C5-C8	1.497 (4)	C18-C19	1.388 (5)
N6-C7	1.325 (4)	C19-C20	1.387 (4)
C7-C7a	1.389 (4)	C19-C22	1.496 (5)
C8-09	1.206 (4)	$\mathrm{C} 20-\mathrm{C} 21$	1.382 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}$	107.8 (2)	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{Ol} 0$	123.4 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Sl3}$	123.8 (2)	C8-010-C11	115.3 (2)
C7a-N1-S13	126.9 (2)	$\mathrm{O} 10-\mathrm{Cl1}-\mathrm{C} 12$	107.7 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	110.0 (3)	N1-S13-O14	105.6(1)
C2-C3-C3a	107.8 (3)	N1-S13-O15	104.4 (1)
C3-C3a-C4	135.2 (3)	N1-S13-C16	105.6 (1)
C3-C3a-C7a	107.3 (3)	O14-S13-015	122.1 (1)
C4-C3a-C7a	117.4 (3)	O14-S13-C16	108.8 (1)
C3a-C4-C5	117.5 (3)	O15-S13-C16	109.0 (1)
C4-C5-N6	124.8 (3)	S13-C16-C17	120.0 (2)
C4-C5-C8	117.8 (2)	S13-C16-C21	118.8 (2)
N6-C5-C8	117.3 (2)	C17-C16-C21	121.2 (3)
C5-N6-C7	118.4 (2)	C16-C17-C18	119.6 (3)
N6-C7-C7a	120.9 (3)	C17-C18-C19	120.9 (3)
$\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}$	107.1 (2)	C18-C19-C20	118.4 (3)
$\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 7$	132.0 (3)	C18-C19-C22	121.0 (3)
C3a-C7a-C7	120.9 (3)	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 22$	120.6 (3)
C5-C8-09	123.1 (3)	C19-C20-C21	121.8 (3)
C5-C8-010	113.5 (2)	C16-C21-C20	118.2 (3)
C2-N1-S13-C16	-88.3 (2)	N1-S13--C16-C17	-95.0 (2)
C7a-N1-S13-C16	75.8 (2)	N1-S13-C16-C21	85.3 (2)

H atoms of the methyl group of C 22 were disordered. Two positions were found with an occupancy factor of 0.50 each. The isotropic displacement parameters of the H atoms were set equal to $1.10 U_{\text {eq }}$ of the parent atom. Data collection: Enraf-Nonius CAD-4 software. Data reduction: NONIUS (Riche, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: R3M (Riche, 1983); ORTEP (Johnson, 1965). Software used to prepare material for publication: ACTACIF (Riche, 1992).

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: PA1098). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Carson, J. R. \& Davis, N. M. (1981). J. Org. Chem. 46, 839-843.
Dekhane, M., Potier, P. \& Dodd, R. H. (1993). Tetrahedron, 49, 8139 8146.

Desales, J., Greenhouse, R. \& Muchowski, J. M. (1982). J. Org. Chem. 47, 3668-3672.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Riche, C. (1983). R3M. Représentation et Manipulation de Modèles Moléculaires. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.

Riche, C. (1989). NONIUS. Program for Data Reduction for EnrafNonius CAD-4 Diffractometers. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
Riche, C. (1992). ACTACIF. Program for the Preparation of CIF Files. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1345-1347

Product of a Paterno-Büchi Reaction of Pentafluorobenzaldehyde and 4-tert-Butyl-1-acetoxycyclohexene

Carolyn Pratt Brock, Michael A. Lloyd, Sundar Vasudevan and David S. Watt

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

Hiroyuki Morita

Department of Chemistry and Biological Engineering, Toyama University, Toyama 930, Japan
(Received 23 November 1993; accepted 8 February 1994)

Abstract

The stereochemistry of the product of the photoaddition of pentafluorobenzaldehyde to 4-tert-butyl-1acetoxycyclohexene, 4-tert-butyl-8-pentafluorophenyl7 -oxabicyclo[4.2.0]oct-1-yl acetate, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{5} \mathrm{O}_{3}$, has been established. The ring fusion is cis, and the aryl and acetoxy substitutents are trans to the tertiary butyl group.

Comment

In the course of developing a synthesis for the 3acetoxyoxetane subunit in the antineoplastic agent taxol (Wani, Taylor, Wall, Coggan \& McPhail, 1971), we examined the prospects for using a Paterno-Büchi reaction (Paterno \& Chietti, 1909; Büchi, Imman \& Lipinsky, 1954) of enol acetates and benzaldehydes to introduce this particular moiety. The success of the methodology would depend upon the yields of the photoaddition reaction as well as of the subsequent oxidative degradation of the aromatic ring and a decarboxylation. Prior reports of the photoaddition reactions of enol ethers and trimethylsilyl enol ethers with aromatic aldehydes suggested that the regiochemistry desired in the taxol situation was favored (Jones, 1981). The photolysis of
variously substituted benzaldehydes with enol acetates had not, however, been investigated (Vasudevan, Brock, Watt \& Morita, 1994). The photolysis of 4 -tert-butyl1 -acetoxycyclohexene (1) and pentafluorobenzaldehyde (2) gave preferentially a 2 -aryl-3-acetoxyoxetane with the expected cis relationship between the pentafluorophenyl and acetoxy groups. It was difficult, however, to resolve the remaining stereochemical issue regarding the selectivity of the facial attack by (2): attack on the diastereotopic faces of (1) would lead either to the oxetane (3) or the oxetane (4). The structure determination confirmed that the product was, in fact, the oxetane (3).

In forming the oxetane (3) rather than (4), the pentafluorobenzaldehyde (2) underwent a preferential syn addition with respect to the tert-butyl group in the enol acetate (1). The factors which guide this unexpected diastereospecificity in this situation are unclear, but the steric influence of the tert-butyl group on attack by the triplet state of (2) would appear to be minimal. A kinetic preference for addition to the re face of the enol acetate (1) may reflect a transition state in which the acetyl group preferentially shields the $s i$ face. Molecular-mechanics calculations for 4-tert-butyl-1-acetoxycyclohexene (1) suggested that a conformation with the acetyl group twisted toward the si face (i.e. syn to the tert-butyl group) was more stable than other conformations with the acetyl in a quadrant above the $r e$ face. This same preference, if present in the transition state, would favor the formation of (3).

Fig. 1. Perspective drawing showing the molecular structure and the atom-numbering scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement. The H atoms have been omitted for the sake of clarity.

